ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.01136
8
0

TabINR: An Implicit Neural Representation Framework for Tabular Data Imputation

1 October 2025
Vincent Ochs
Florentin Bieder
Sidaty El Hadramy
Paul Friedrich
Stephanie Taha-Mehlitz
Anas Taha
Philippe C. Cattin
    LMTDAI4TS
ArXiv (abs)PDFHTML
Main:9 Pages
28 Figures
Bibliography:3 Pages
5 Tables
Appendix:10 Pages
Abstract

Tabular data builds the basis for a wide range of applications, yet real-world datasets are frequently incomplete due to collection errors, privacy restrictions, or sensor failures. As missing values degrade the performance or hinder the applicability of downstream models, and while simple imputing strategies tend to introduce bias or distort the underlying data distribution, we require imputers that provide high-quality imputations, are robust across dataset sizes and yield fast inference. We therefore introduce TabINR, an auto-decoder based Implicit Neural Representation (INR) framework that models tables as neural functions. Building on recent advances in generalizable INRs, we introduce learnable row and feature embeddings that effectively deal with the discrete structure of tabular data and can be inferred from partial observations, enabling instance adaptive imputations without modifying the trained model. We evaluate our framework across a diverse range of twelve real-world datasets and multiple missingness mechanisms, demonstrating consistently strong imputation accuracy, mostly matching or outperforming classical (KNN, MICE, MissForest) and deep learning based models (GAIN, ReMasker), with the clearest gains on high-dimensional datasets.

View on arXiv
Comments on this paper