ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.01031
44
0

Secure and reversible face anonymization with diffusion models

1 October 2025
Pol Labarbarie
Vincent Itier
William Puech
    DiffMPICV
ArXiv (abs)PDFHTML
Main:4 Pages
3 Figures
Bibliography:1 Pages
1 Tables
Abstract

Face images processed by computer vision algorithms contain sensitive personal information that malicious actors can capture without consent. These privacy and security risks highlight the need for effective face anonymization methods. Current methods struggle to propose a good trade-off between a secure scheme with high-quality image generation and reversibility for later person authentication. Diffusion-based approaches produce high-quality anonymized images but lack the secret key mechanism to ensure that only authorized parties can reverse the process. In this paper, we introduce, to our knowledge, the first secure, high-quality reversible anonymization method based on a diffusion model. We propose to combine the secret key with the latent faces representation of the diffusion model. To preserve identity-irrelevant features, generation is constrained by a facial mask, maintaining high-quality images. By using a deterministic forward and backward diffusion process, our approach enforces that the original face can be recovered with the correct secret key. We also show that the proposed method produces anonymized faces that are less visually similar to the original faces, compared to other previous work.

View on arXiv
Comments on this paper