ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.00698
36
0

Physics-Informed Extreme Learning Machine (PIELM) for Tunnelling-Induced Soil-Pile Interactions

1 October 2025
Fu-Chen Guo
Pei-Zhi Zhuang
Fei Ren
Hong-Ya Yue
He Yang
    PINN
ArXiv (abs)PDFHTML
Main:35 Pages
3 Figures
2 Tables
Abstract

Physics-informed machine learning has been a promising data-driven and physics-informed approach in geotechnical engineering. This study proposes a physics-informed extreme learning machine (PIELM) framework for analyzing tunneling-induced soil-pile interactions. The pile foundation is modeled as an Euler-Bernoulli beam, and the surrounding soil is modeled as a Pasternak foundation. The soil-pile interaction is formulated into a fourth-order ordinary differential equation (ODE) that constitutes the physics-informed component, while measured data are incorporated into PIELM as the data-driven component. Combining physics and data yields a loss vector of the extreme learning machine (ELM) network, which is trained within 1 second by the least squares method. After validating the PIELM approach by the boundary element method (BEM) and finite difference method (FDM), parametric studies are carried out to examine the effects of ELM network architecture, data monitoring locations and numbers on the performance of PIELM. The results indicate that monitored data should be placed at positions where the gradients of pile deflections are significant, such as at the pile tip/top and near tunneling zones. Two application examples highlight the critical role of physics-informed and data-driven approach for tunnelling-induced soil-pile interactions. The proposed approach shows great potential for real-time monitoring and safety assessment of pile foundations, and benefits for intelligent early-warning systems in geotechnical engineering.

View on arXiv
Comments on this paper