ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.25738
56
0

The 1st Solution for MOSEv1 Challenge on LSVOS 2025: CGFSeg

30 September 2025
Tingmin Li
Yixuan Li
Yang Yang
    VOS
ArXiv (abs)PDFHTML
Main:5 Pages
5 Figures
Bibliography:1 Pages
1 Tables
Abstract

Video Object Segmentation (VOS) aims to track and segment specific objects across entire video sequences, yet it remains highly challenging under complex real-world scenarios. The MOSEv1 and LVOS dataset, adopted in the MOSEv1 challenge on LSVOS 2025, which is specifically designed to enhance the robustness of VOS models in complex real-world scenarios, including long-term object disappearances and reappearances, as well as the presence of small and inconspicuous objects. In this paper, we present our improved method, Confidence-Guided Fusion Segmentation (CGFSeg), for the VOS task in the MOSEv1 Challenge. During training, the feature extractor of SAM2 is frozen, while the remaining components are fine-tuned to preserve strong feature extraction ability and improve segmentation accuracy. In the inference stage, we introduce a pixel-check strategy that progressively refines predictions by exploiting complementary strengths of multiple models, thereby yielding robust final masks. As a result, our method achieves a J&F score of 86.37% on the test set, ranking 1st in the MOSEv1 Challenge at LSVOS 2025. These results highlight the effectiveness of our approach in addressing the challenges of VOS task in complex scenarios.

View on arXiv
Comments on this paper