ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.25622
60
0
v1v2 (latest)

Layer-wise dynamic rank for compressing large language models

30 September 2025
Zhendong Mi
Bian Sun
Grace Li Zhang
Shaoyi Huang
    ALM
ArXiv (abs)PDFHTML
Main:9 Pages
5 Figures
Bibliography:5 Pages
8 Tables
Appendix:4 Pages
Abstract

Large language models (LLMs) have rapidly scaled in size, bringing severe memory and computational challenges that hinder their deployment. Singular Value Decomposition (SVD)-based compression has emerged as an appealing post-training compression technique for LLMs, yet most existing methods apply a uniform compression ratio across all layers, implicitly assuming homogeneous information included in various layers. This overlooks the substantial intra-layer heterogeneity observed in LLMs, where middle layers tend to encode richer information while early and late layers are more redundant. In this work, we revisit the existing SVD-based compression method and propose D-Rank, a framework with layer-wise balanced Dynamic Rank allocation for LLMs compression. We first introduce effective rank as a principled metric to measure the information density of weight matrices, and then allocate ranks via a Lagrange multiplier-based optimization scheme to adaptively assign more capacity to groups with higher information density under a fixed compression ratio. Moreover, we rebalance the allocated ranks across attention layers to account for their varying importance and extend D-Rank to latest LLMs with grouped-query attention. Extensive experiments on various LLMs with different scales across multiple compression ratios demonstrate that D-Rank consistently outperforms SVD-LLM, ASVD, and Basis Sharing, achieving more than 15 lower perplexity with LLaMA-3-8B model on C4 datasets at 20% compression ratio and up to 5% higher zero-shot reasoning accuracy with LLaMA-7B model at 40% compression ratio while achieving even higher throughput.

View on arXiv
Comments on this paper