ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.24318
72
0

Similarity-Aware Selective State-Space Modeling for Semantic Correspondence

29 September 2025
Seungwook Kim
Minsu Cho
    Mamba
ArXiv (abs)PDFHTMLHuggingFace (1 upvotes)
Main:8 Pages
11 Figures
Bibliography:3 Pages
20 Tables
Appendix:12 Pages
Abstract

Establishing semantic correspondences between images is a fundamental yet challenging task in computer vision. Traditional feature-metric methods enhance visual features but may miss complex inter-correlation relationships, while recent correlation-metric approaches are hindered by high computational costs due to processing 4D correlation maps. We introduce MambaMatcher, a novel method that overcomes these limitations by efficiently modeling high-dimensional correlations using selective state-space models (SSMs). By implementing a similarity-aware selective scan mechanism adapted from Mamba's linear-complexity algorithm, MambaMatcher refines the 4D correlation map effectively without compromising feature map resolution or receptive field. Experiments on standard semantic correspondence benchmarks demonstrate that MambaMatcher achieves state-of-the-art performance.

View on arXiv
Comments on this paper