ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.24020
36
0

Hazy Pedestrian Trajectory Prediction via Physical Priors and Graph-Mamba

28 September 2025
Jian Chen
Zhuoran Zheng
Han Hu
Guijuan Zhang
Dianjie Lu
Liang Li
Chen Lyu
    Mamba
ArXiv (abs)PDFHTML
Main:11 Pages
8 Figures
Bibliography:2 Pages
3 Tables
Abstract

To address the issues of physical information degradation and ineffective pedestrian interaction modeling in pedestrian trajectory prediction under hazy weather conditions, we propose a deep learning model that combines physical priors of atmospheric scattering with topological modeling of pedestrian relationships. Specifically, we first construct a differentiable atmospheric scattering model that decouples haze concentration from light degradation through a network with physical parameter estimation, enabling the learning of haze-mitigated feature representations. Second, we design an adaptive scanning state space model for feature extraction. Our adaptive Mamba variant achieves a 78% inference speed increase over native Mamba while preserving long-range dependency modeling.Finally, to efficiently model pedestrian relationships, we develop a heterogeneous graph attention network, using graph matrices to model multi-granularity interactions between pedestrians and groups, combined with a spatio-temporal fusion module to capture the collaborative evolution patterns of pedestrian movements. Furthermore, we constructed a new pedestrian trajectory prediction dataset based on ETH/UCY to evaluate the effectiveness of the proposed method. Experiments show that our method reduces the minADE / minFDE metrics by 37.2% and 41.5%, respectively, compared to the SOTA models in dense haze scenarios (visibility < 30m), providing a new modeling paradigm for reliable perception in intelligent transportation systems in adverse environments.

View on arXiv
Comments on this paper