ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.23011
64
0

Geometry-Aware Losses for Structure-Preserving Text-to-Sign Language Generation

27 September 2025
Zetian Wu
Tianshuo Zhou
Stefan Lee
Liang Huang
    SLR
ArXiv (abs)PDFHTML
Main:7 Pages
7 Figures
Bibliography:3 Pages
1 Tables
Abstract

Sign language translation from text to video plays a crucial role in enabling effective communication for Deaf and hard--of--hearing individuals. A major challenge lies in generating accurate and natural body poses and movements that faithfully convey intended meanings. Prior methods often neglect the anatomical constraints and coordination patterns of human skeletal motion, resulting in rigid or biomechanically implausible outputs. To address this, we propose a novel approach that explicitly models the relationships among skeletal joints--including shoulders, arms, and hands--by incorporating geometric constraints on joint positions, bone lengths, and movement dynamics. During training, we introduce a parent-relative reweighting mechanism to enhance finger flexibility and reduce motion stiffness. Additionally, bone-pose losses and bone-length constraints enforce anatomically consistent structures. Our method narrows the performance gap between the previous best and the ground-truth oracle by 56.51%, and further reduces discrepancies in bone length and movement variance by 18.76% and 5.48%, respectively, demonstrating significant gains in anatomical realism and motion naturalness.

View on arXiv
Comments on this paper