ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.21489
20
1

GraphPFN: A Prior-Data Fitted Graph Foundation Model

25 September 2025
Dmitry Eremeev
Oleg Platonov
Gleb Bazhenov
Artem Babenko
Liudmila Prokhorenkova
    AI4CE
ArXiv (abs)PDFHTMLGithub
Main:9 Pages
4 Figures
Bibliography:4 Pages
5 Tables
Appendix:3 Pages
Abstract

Foundation models pretrained on large-scale datasets have transformed such fields as natural language processing and computer vision, but their application to graph data remains limited. Recently emerged graph foundation models, such as G2T-FM, utilize tabular foundation models for graph tasks and were shown to significantly outperform prior attempts to create GFMs. However, these models primarily rely on hand-crafted graph features, limiting their ability to learn complex graph-specific patterns. In this work, we propose GraphPFN: a prior-data fitted network for node-level prediction. First, we design a prior distribution of synthetic attributed graphs. For graph structure generation, we use a novel combination of multiple stochastic block models and a preferential attachment process. We then apply graph-aware structured causal models to generate node attributes and targets. This procedure allows us to efficiently generate a wide range of realistic graph datasets. Then, we augment the tabular foundation model LimiX with attention-based graph neighborhood aggregation layers and train it on synthetic graphs sampled from our prior, allowing the model to capture graph structural dependencies not present in tabular data. On diverse real-world graph datasets with up to 50,000 nodes, GraphPFN shows strong in-context learning performance and achieves state-of-the-art results after finetuning, outperforming both G2T-FM and task-specific GNNs trained from scratch on most datasets. More broadly, our work demonstrates that pretraining on synthetic graphs from a well-designed prior distribution is an effective strategy for building graph foundation models.

View on arXiv
Comments on this paper