ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.20777
89
1

CompressAI-Vision: Open-source software to evaluate compression methods for computer vision tasks

25 September 2025
Hyomin Choi
Heeji Han
Chris Rosewarne
Fabien Racapé
ArXiv (abs)PDFHTML
Main:5 Pages
4 Figures
Bibliography:1 Pages
4 Tables
Abstract

With the increasing use of neural network (NN)-based computer vision applications that process image and video data as input, interest has emerged in video compression technology optimized for computer vision tasks. In fact, given the variety of vision tasks, associated NN models and datasets, a consolidated platform is needed as a common ground to implement and evaluate compression methods optimized for downstream vision tasks. CompressAI-Vision is introduced as a comprehensive evaluation platform where new coding tools compete to efficiently compress the input of vision network while retaining task accuracy in the context of two different inference scenarios: "remote" and "split" inferencing. Our study showcases various use cases of the evaluation platform incorporated with standard codecs (under development) by examining the compression gain on several datasets in terms of bit-rate versus task accuracy. This evaluation platform has been developed as open-source software and is adopted by the Moving Pictures Experts Group (MPEG) for the development the Feature Coding for Machines (FCM) standard. The software is available publicly atthis https URL.

View on arXiv
Comments on this paper