ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.18880
88
3
v1v2 (latest)

Diversity Boosts AI-Generated Text Detection

23 September 2025
Advik Raj Basani
Pin-Yu Chen
    DeLMO
ArXiv (abs)PDFHTMLGithub (1★)
Main:9 Pages
11 Figures
Bibliography:9 Pages
20 Tables
Appendix:16 Pages
Abstract

Detecting AI-generated text is an increasing necessity to combat misuse of LLMs in education, business compliance, journalism, and social media, where synthetic fluency can mask misinformation or deception. While prior detectors often rely on token-level likelihoods or opaque black-box classifiers, these approaches struggle against high-quality generations and offer little interpretability. In this work, we propose DivEye, a novel detection framework that captures how unpredictability fluctuates across a text using surprisal-based features. Motivated by the observation that human-authored text exhibits richer variability in lexical and structural unpredictability than LLM outputs, DivEye captures this signal through a set of interpretable statistical features. Our method outperforms existing zero-shot detectors by up to 33.2% and achieves competitive performance with fine-tuned baselines across multiple benchmarks. DivEye is robust to paraphrasing and adversarial attacks, generalizes well across domains and models, and improves the performance of existing detectors by up to 18.7% when used as an auxiliary signal. Beyond detection, DivEye provides interpretable insights into why a text is flagged, pointing to rhythmic unpredictability as a powerful and underexplored signal for LLM detection.

View on arXiv
Comments on this paper