ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.18535
51
0

Trace Is In Sentences: Unbiased Lightweight ChatGPT-Generated Text Detector

23 September 2025
Mo Mu
Dianqiao Lei
Chang Li
    DeLMO
ArXiv (abs)PDFHTML
Main:4 Pages
3 Figures
Bibliography:1 Pages
1 Tables
Abstract

The widespread adoption of ChatGPT has raised concerns about its misuse, highlighting the need for robust detection of AI-generated text. Current word-level detectors are vulnerable to paraphrasing or simple prompts (PSP), suffer from biases induced by ChatGPT's word-level patterns (CWP) and training data content, degrade on modified text, and often require large models or online LLM interaction. To tackle these issues, we introduce a novel task to detect both original and PSP-modified AI-generated texts, and propose a lightweight framework that classifies texts based on their internal structure, which remains invariant under word-level changes. Our approach encodes sentence embeddings from pre-trained language models and models their relationships via attention. We employ contrastive learning to mitigate embedding biases from autoregressive generation and incorporate a causal graph with counterfactual methods to isolate structural features from topic-related biases. Experiments on two curated datasets, including abstract comparisons and revised life FAQs, validate the effectiveness of our method.

View on arXiv
Comments on this paper