ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.17431
37
0
v1v2 (latest)

Hierarchical Neural Semantic Representation for 3D Semantic Correspondence

22 September 2025
Keyu Du
Jingyu Hu
Haipeng Li
Hao Xu
Haibing Huang
Chi-Wing Fu
Shuaicheng Liu
    3DV3DH
ArXiv (abs)PDFHTML
Main:7 Pages
11 Figures
Bibliography:2 Pages
3 Tables
Appendix:2 Pages
Abstract

This paper presents a new approach to estimate accurate and robust 3D semantic correspondence with the hierarchical neural semantic representation. Our work has three key contributions. First, we design the hierarchical neural semantic representation (HNSR), which consists of a global semantic feature to capture high-level structure and multi-resolution local geometric features to preserve fine details, by carefully harnessing 3D priors from pre-trained 3D generative models. Second, we design a progressive global-to-local matching strategy, which establishes coarse semantic correspondence using the global semantic feature, then iteratively refines it with local geometric features, yielding accurate and semantically-consistent mappings. Third, our framework is training-free and broadly compatible with various pre-trained 3D generative backbones, demonstrating strong generalization across diverse shape categories. Our method also supports various applications, such as shape co-segmentation, keypoint matching, and texture transfer, and generalizes well to structurally diverse shapes, with promising results even in cross-category scenarios. Both qualitative and quantitative evaluations show that our method outperforms previous state-of-the-art techniques.

View on arXiv
Comments on this paper