ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.17141
68
0

History-Aware Visuomotor Policy Learning via Point Tracking

21 September 2025
Jingjing Chen
Hongjie Fang
Chenxi Wang
Shiquan Wang
Cewu Lu
ArXiv (abs)PDFHTML
Main:6 Pages
6 Figures
Bibliography:3 Pages
4 Tables
Appendix:2 Pages
Abstract

Many manipulation tasks require memory beyond the current observation, yet most visuomotor policies rely on the Markov assumption and thus struggle with repeated states or long-horizon dependencies. Existing methods attempt to extend observation horizons but remain insufficient for diverse memory requirements. To this end, we propose an object-centric history representation based on point tracking, which abstracts past observations into a compact and structured form that retains only essential task-relevant information. Tracked points are encoded and aggregated at the object level, yielding a compact history representation that can be seamlessly integrated into various visuomotor policies. Our design provides full history-awareness with high computational efficiency, leading to improved overall task performance and decision accuracy. Through extensive evaluations on diverse manipulation tasks, we show that our method addresses multiple facets of memory requirements - such as task stage identification, spatial memorization, and action counting, as well as longer-term demands like continuous and pre-loaded memory - and consistently outperforms both Markovian baselines and prior history-based approaches. Project website:this http URL

View on arXiv
Comments on this paper