ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.16957
49
0

MO R-CNN: Multispectral Oriented R-CNN for Object Detection in Remote Sensing Image

21 September 2025
Leiyu Wang
Biao Jin
Feng Huang
Liqiong Chen
Zhengyong Wang
X. He
Honggang Chen
    ObjD
ArXiv (abs)PDFHTMLGithub
Main:12 Pages
17 Figures
Bibliography:2 Pages
Abstract

Oriented object detection for multi-spectral imagery faces significant challenges due to differences both within and between modalities. Although existing methods have improved detection accuracy through complex network architectures, their high computational complexity and memory consumption severely restrict their performance. Motivated by the success of large kernel convolutions in remote sensing, we propose MO R-CNN, a lightweight framework for multi-spectral oriented detection featuring heterogeneous feature extraction network (HFEN), single modality supervision (SMS), and condition-based multimodal label fusion (CMLF). HFEN leverages inter-modal differences to adaptively align, merge, and enhance multi-modal features. SMS constrains multi-scale features and enables the model to learn from multiple modalities. CMLF fuses multimodal labels based on specific rules, providing the model with a more robust and consistent supervisory signal. Experiments on the DroneVehicle, VEDAI and OGSOD datasets prove the superiority of our method. The source code is available at:this https URL.

View on arXiv
Comments on this paper