ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.14295
118
0
v1v2v3v4 (latest)

AEGIS: Automated Error Generation and Identification for Multi-Agent Systems

17 September 2025
Fanqi Kong
Ruijie Zhang
Huaxiao Yin
Guibin Zhang
X. Zhang
Ziang Chen
Zhaowei Zhang
Xiaoyuan Zhang
Song-Chun Zhu
Xue Feng
    AAML
ArXiv (abs)PDFHTMLHuggingFace (1 upvotes)
Main:8 Pages
5 Figures
Bibliography:5 Pages
8 Tables
Appendix:18 Pages
Abstract

As Multi-Agent Systems (MAS) become increasingly autonomous and complex, understanding their error modes is critical for ensuring their reliability and safety. However, research in this area has been severely hampered by the lack of large-scale, diverse datasets with precise, ground-truth error labels. To address this bottleneck, we introduce \textbf{AEGIS}, a novel framework for \textbf{A}utomated \textbf{E}rror \textbf{G}eneration and \textbf{I}dentification for Multi-Agent \textbf{S}ystems. By systematically injecting controllable and traceable errors into initially successful trajectories, we create a rich dataset of realistic failures. This is achieved using a context-aware, LLM-based adaptive manipulator that performs sophisticated attacks like prompt injection and response corruption to induce specific, predefined error modes. We demonstrate the value of our dataset by exploring three distinct learning paradigms for the error identification task: Supervised Fine-Tuning, Reinforcement Learning, and Contrastive Learning. Our comprehensive experiments show that models trained on AEGIS data achieve substantial improvements across all three learning paradigms. Notably, several of our fine-tuned models demonstrate performance competitive with or superior to proprietary systems an order of magnitude larger, validating our automated data generation framework as a crucial resource for developing more robust and interpretable multi-agent systems. Our project website is available at this https URL.

View on arXiv
Comments on this paper