ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.13476
52
0

A Geometric Graph-Based Deep Learning Model for Drug-Target Affinity Prediction

15 September 2025
M. Rana
Farjana Tasnim Mukta
D. Nguyen
    GNN
ArXiv (abs)PDFHTML
Main:10 Pages
8 Figures
Bibliography:3 Pages
7 Tables
Appendix:3 Pages
Abstract

In structure-based drug design, accurately estimating the binding affinity between a candidate ligand and its protein receptor is a central challenge. Recent advances in artificial intelligence, particularly deep learning, have demonstrated superior performance over traditional empirical and physics-based methods for this task, enabled by the growing availability of structural and experimental affinity data. In this work, we introduce DeepGGL, a deep convolutional neural network that integrates residual connections and an attention mechanism within a geometric graph learning framework. By leveraging multiscale weighted colored bipartite subgraphs, DeepGGL effectively captures fine-grained atom-level interactions in protein-ligand complexes across multiple scales. We benchmarked DeepGGL against established models on CASF-2013 and CASF-2016, where it achieved state-of-the-art performance with significant improvements across diverse evaluation metrics. To further assess robustness and generalization, we tested the model on the CSAR-NRC-HiQ dataset and the PDBbind v2019 holdout set. DeepGGL consistently maintained high predictive accuracy, highlighting its adaptability and reliability for binding affinity prediction in structure-based drug discovery.

View on arXiv
Comments on this paper