ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.11838
44
0

Probabilistic Robustness Analysis in High Dimensional Space: Application to Semantic Segmentation Network

15 September 2025
Navid Hashemi
Samuel Sasaki
Diego Manzanas Lopez
Ipek Oguz
Meiyi Ma
Taylor T. Johnson
    UQCVAAML
ArXiv (abs)PDFHTMLGithub (1★)
Main:11 Pages
8 Figures
Bibliography:5 Pages
3 Tables
Appendix:11 Pages
Abstract

Semantic segmentation networks (SSNs) play a critical role in domains such as medical imaging, autonomous driving, and environmental monitoring, where safety hinges on reliable model behavior under uncertainty. Yet, existing probabilistic verification approaches struggle to scale with the complexity and dimensionality of modern segmentation tasks, often yielding guarantees that are too conservative to be practical. We introduce a probabilistic verification framework that is both architecture-agnostic and scalable to high-dimensional outputs. Our approach combines sampling-based reachability analysis with conformal inference (CI) to deliver provable guarantees while avoiding the excessive conservatism of prior methods. To counteract CI's limitations in high-dimensional settings, we propose novel strategies that reduce conservatism without compromising rigor. Empirical evaluation on large-scale segmentation models across CamVid, OCTA-500, Lung Segmentation, and Cityscapes demonstrates that our method provides reliable safety guarantees while substantially tightening bounds compared to SOTA. We also provide a toolbox implementing this technique, available on Github.

View on arXiv
Comments on this paper