ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.10866
204
2
v1v2 (latest)

Physics-informed neural network solves minimal surfaces in curved spacetime

13 September 2025
Koji Hashimoto
Koichi Kyo
Masaki Murata
Gakuto Ogiwara
Norihiro Tanahashi
    PINNAI4CE
ArXiv (abs)PDFHTML
Main:40 Pages
20 Figures
Bibliography:2 Pages
4 Tables
Abstract

We develop a flexible framework based on physics-informed neural networks (PINNs) for solving boundary value problems involving minimal surfaces in curved spacetimes, with a particular emphasis on singularities and moving boundaries. By encoding the underlying physical laws into the loss function and designing network architectures that incorporate the singular behavior and dynamic boundaries, our approach enables robust and accurate solutions to both ordinary and partial differential equations with complex boundary conditions. We demonstrate the versatility of this framework through applications to minimal surface problems in anti-de Sitter (AdS) spacetime, including examples relevant to the AdS/CFT correspondence (e.g. Wilson loops and gluon scattering amplitudes) popularly used in the context of string theory in theoretical physics. Our methods efficiently handle singularities at boundaries, and also support both "soft" (loss-based) and "hard" (formulation-based) imposition of boundary conditions, including cases where the position of a boundary is promoted to a trainable parameter. The techniques developed here are not limited to high-energy theoretical physics but are broadly applicable to boundary value problems encountered in mathematics, engineering, and the natural sciences, wherever singularities and moving boundaries play a critical role.

View on arXiv
Comments on this paper