ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.07245
60
0

IP-Basis PINNs: Efficient Multi-Query Inverse Parameter Estimation

8 September 2025
Shalev Manor
Mohammad Kohandel
    PINN
ArXiv (abs)PDFHTML
Main:14 Pages
4 Figures
Bibliography:4 Pages
7 Tables
Abstract

Solving inverse problems with Physics-Informed Neural Networks (PINNs) is computationally expensive for multi-query scenarios, as each new set of observed data requires a new, expensive training procedure. We present Inverse-Parameter Basis PINNs (IP-Basis PINNs), a meta-learning framework that extends the foundational work of Desai et al. (2022) to enable rapid and efficient inference for inverse problems. Our method employs an offline-online decomposition: a deep network is first trained offline to produce a rich set of basis functions that span the solution space of a parametric differential equation. For each new inverse problem online, this network is frozen, and solutions and parameters are inferred by training only a lightweight linear output layer against observed data. Key innovations that make our approach effective for inverse problems include: (1) a novel online loss formulation for simultaneous solution reconstruction and parameter identification, (2) a significant reduction in computational overhead via forward-mode automatic differentiation for PDE loss evaluation, and (3) a non-trivial validation and early-stopping mechanism for robust offline training. We demonstrate the efficacy of IP-Basis PINNs on three diverse benchmarks, including an extension to universal PINNs for unknown functional terms-showing consistent performance across constant and functional parameter estimation, a significant speedup per query over standard PINNs, and robust operation with scarce and noisy data.

View on arXiv
Comments on this paper