ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.03677
48
0
v1v2 (latest)

Insights from Gradient Dynamics: Gradient Autoscaled Normalization

3 September 2025
Vincent-Daniel Yun
ArXiv (abs)PDFHTMLGithub (198★)
Main:5 Pages
4 Figures
Bibliography:4 Pages
1 Tables
Appendix:4 Pages
Abstract

Gradient dynamics play a central role in determining the stability and generalization of deep neural networks. In this work, we provide an empirical analysis of how variance and standard deviation of gradients evolve during training, showing consistent changes across layers and at the global scale in convolutional networks. Motivated by these observations, we propose a hyperparameter-free gradient normalization method that aligns gradient scaling with their natural evolution. This approach prevents unintended amplification, stabilizes optimization, and preserves convergence guarantees. Experiments on the challenging CIFAR-100 benchmark with ResNet-20, ResNet-56, and VGG-16-BN demonstrate that our method maintains or improves test accuracy even under strong generalization. Beyond practical performance, our study highlights the importance of directly tracking gradient dynamics, aiming to bridge the gap between theoretical expectations and empirical behaviors, and to provide insights for future optimization research.

View on arXiv
Comments on this paper