ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.03286
43
0

Accountability Framework for Healthcare AI Systems: Towards Joint Accountability in Decision Making

3 September 2025
Prachi Bagave
Marcus Westberg
Marijn Janssen
Aaron Yi Ding
ArXiv (abs)PDFHTML
Main:3 Pages
3 Figures
1 Tables
Appendix:10 Pages
Abstract

AI is transforming the healthcare domain and is increasingly helping practitioners to make health-related decisions. Therefore, accountability becomes a crucial concern for critical AI-driven decisions. Although regulatory bodies, such as the EU commission, provide guidelines, they are highlevel and focus on the ''what'' that should be done and less on the ''how'', creating a knowledge gap for actors. Through an extensive analysis, we found that the term accountability is perceived and dealt with in many different ways, depending on the actor's expertise and domain of work. With increasing concerns about AI accountability issues and the ambiguity around this term, this paper bridges the gap between the ''what'' and ''how'' of AI accountability, specifically for AI systems in healthcare. We do this by analysing the concept of accountability, formulating an accountability framework, and providing a three-tier structure for handling various accountability mechanisms. Our accountability framework positions the regulations of healthcare AI systems and the mechanisms adopted by the actors under a consistent accountability regime. Moreover, the three-tier structure guides the actors of the healthcare AI system to categorise the mechanisms based on their conduct. Through our framework, we advocate that decision-making in healthcare AI holds shared dependencies, where accountability should be dealt with jointly and should foster collaborations. We highlight the role of explainability in instigating communication and information sharing between the actors to further facilitate the collaborative process.

View on arXiv
Comments on this paper