32
v1v2 (latest)

From Injection to Defense: Constructing Edit-Based Fingerprints for Large Language Models

Main:7 Pages
4 Figures
Bibliography:2 Pages
8 Tables
Appendix:2 Pages
Abstract

Fingerprinting is critical for maintaining traceability and protecting the intellectual property (IP) of developers, as LLMs deployed in web applications are susceptible to unauthorized redistribution and misuse via fine-tuning or black-box deployment. However, current backdoor-based fingerprinting methods face a fundamental trade-off: fingerprints embedded as garbled text are easily detected and filtered, whereas those crafted as coherent natural language are prone to being triggered unintentionally. To overcome these limitations, we propose RFEdit, a knowledge-editing framework that embeds a rule-based multilingual natural language fingerprint (MNLF) by modifying a sparse subset of model weights. This approach enables efficient and robust fingerprint injection with minimal impact on unrelated knowledge in LLMs. Our RFEdit framework is further safeguarded by Fingerprint Subspace-aware Fine-Tuning (FSFT), which mitigates fingerprint degradation during legitimate fine-tuning by restricting parameter updates to the fingerprint subspace. This approach preserves fingerprint integrity while enhancing downstream task performance of LLMs. These advances establish a comprehensive pipeline from fingerprint injection to defense, achieving high detection effectiveness, robustness against adversarial manipulations, harmlessness to model utility, and persistence under fine-tuning. Extensive experiments demonstrate that RFEdit maintains robustness under quantization and pruning. Additionally, fingerprint effectiveness is generally improved by more than 10\% when combined with FSFT for math and alpaca downstream tasks.

View on arXiv
Comments on this paper