ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.00325
78
0

GIER: Gap-Driven Self-Refinement for Large Language Models

30 August 2025
Rinku Dewri
    LRM
ArXiv (abs)PDFHTML
Main:10 Pages
9 Figures
Bibliography:3 Pages
6 Tables
Appendix:17 Pages
Abstract

We introduce GIER (Gap-driven Iterative Enhancement of Responses), a general framework for improving large language model (LLM) outputs through self-reflection and revision based on conceptual quality criteria. Unlike prompting strategies that rely on demonstrations, examples, or chain-of-thought templates, GIER utilizes natural language descriptions of reasoning gaps, and prompts a model to iteratively critique and refine its own outputs to better satisfy these criteria. Across three reasoning-intensive tasks (SciFact, PrivacyQA, and e-SNLI) and four LLMs (GPT-4.1, GPT-4o Mini, Gemini 1.5 Pro, and Llama 3.3 70B), GIER improves rationale quality, grounding, and reasoning alignment without degrading task accuracy. Our analysis demonstrates that models can not only interpret abstract conceptual gaps but also translate them into concrete reasoning improvements.

View on arXiv
Comments on this paper