ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.21741
126
2
v1v2 (latest)

Not All Parameters Are Created Equal: Smart Isolation Boosts Fine-Tuning Performance

29 August 2025
Yao Wang
Di Liang
Minlong Peng
    MoMe
ArXiv (abs)PDFHTML
Main:8 Pages
2 Figures
Bibliography:4 Pages
5 Tables
Appendix:3 Pages
Abstract

Supervised fine-tuning (SFT) is a pivotal approach to adapting large language models (LLMs) for downstream tasks; however, performance often suffers from the ``seesaw phenomenon'', where indiscriminate parameter updates yield progress on certain tasks at the expense of others. To address this challenge, we propose a novel \emph{Core Parameter Isolation Fine-Tuning} (CPI-FT) framework. Specifically, we first independently fine-tune the LLM on each task to identify its core parameter regions by quantifying parameter update magnitudes. Tasks with similar core regions are then grouped based on region overlap, forming clusters for joint modeling. We further introduce a parameter fusion technique: for each task, core parameters from its individually fine-tuned model are directly transplanted into a unified backbone, while non-core parameters from different tasks are smoothly integrated via Spherical Linear Interpolation (SLERP), mitigating destructive interference. A lightweight, pipelined SFT training phase using mixed-task data is subsequently employed, while freezing core regions from prior tasks to prevent catastrophic forgetting. Extensive experiments on multiple public benchmarks demonstrate that our approach significantly alleviates task interference and forgetting, consistently outperforming vanilla multi-task and multi-stage fine-tuning baselines.

View on arXiv
Comments on this paper