ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.19183
0
1

Get Global Guarantees: On the Probabilistic Nature of Perturbation Robustness

26 August 2025
Wenchuan Mu
Kwan Hui Lim
    AAML
ArXiv (abs)PDFHTML
Main:9 Pages
2 Figures
Bibliography:2 Pages
2 Tables
Abstract

In safety-critical deep learning applications, robustness measures the ability of neural models that handle imperceptible perturbations in input data, which may lead to potential safety hazards. Existing pre-deployment robustness assessment methods typically suffer from significant trade-offs between computational cost and measurement precision, limiting their practical utility. To address these limitations, this paper conducts a comprehensive comparative analysis of existing robustness definitions and associated assessment methodologies. We propose tower robustness to evaluate robustness, which is a novel, practical metric based on hypothesis testing to quantitatively evaluate probabilistic robustness, enabling more rigorous and efficient pre-deployment assessments. Our extensive comparative evaluation illustrates the advantages and applicability of our proposed approach, thereby advancing the systematic understanding and enhancement of model robustness in safety-critical deep learning applications.

View on arXiv
Comments on this paper