ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.13223
93
2

MIRAGE: Towards AI-Generated Image Detection in the Wild

17 August 2025
Cheng Xia
Manxi Lin
Jiexiang Tan
Xiaoxiong Du
Yang Qiu
Junjun Zheng
Xiangheng Kong
Yuning Jiang
Bo Zheng
    VLM
ArXiv (abs)PDFHTMLGithub (87986★)
Main:7 Pages
40 Figures
Bibliography:3 Pages
15 Tables
Appendix:36 Pages
Abstract

The spreading of AI-generated images (AIGI), driven by advances in generative AI, poses a significant threat to information security and public trust. Existing AIGI detectors, while effective against images in clean laboratory settings, fail to generalize to in-the-wild scenarios. These real-world images are noisy, varying from ``obviously fake" images to realistic ones derived from multiple generative models and further edited for quality control. We address in-the-wild AIGI detection in this paper. We introduce Mirage, a challenging benchmark designed to emulate the complexity of in-the-wild AIGI. Mirage is constructed from two sources: (1) a large corpus of Internet-sourced AIGI verified by human experts, and (2) a synthesized dataset created through the collaboration between multiple expert generators, closely simulating the realistic AIGI in the wild. Building on this benchmark, we propose Mirage-R1, a vision-language model with heuristic-to-analytic reasoning, a reflective reasoning mechanism for AIGI detection. Mirage-R1 is trained in two stages: a supervised-fine-tuning cold start, followed by a reinforcement learning stage. By further adopting an inference-time adaptive thinking strategy, Mirage-R1 is able to provide either a quick judgment or a more robust and accurate conclusion, effectively balancing inference speed and performance. Extensive experiments show that our model leads state-of-the-art detectors by 5% and 10% on Mirage and the public benchmark, respectively. The benchmark and code will be made publicly available.

View on arXiv
Comments on this paper