ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.09759
56
0

Echoes of Agreement: Argument Driven Opinion Shifts in Large Language Models

11 August 2025
Avneet Kaur
ArXiv (abs)PDFHTML
Main:4 Pages
9 Figures
Bibliography:2 Pages
5 Tables
Appendix:4 Pages
Abstract

There have been numerous studies evaluating bias of LLMs towards political topics. However, how positions towards these topics in model outputs are highly sensitive to the prompt. What happens when the prompt itself is suggestive of certain arguments towards those positions remains underexplored. This is crucial for understanding how robust these bias evaluations are and for understanding model behaviour, as these models frequently interact with opinionated text. To that end, we conduct experiments for political bias evaluation in presence of supporting and refuting arguments. Our experiments show that such arguments substantially alter model responses towards the direction of the provided argument in both single-turn and multi-turn settings. Moreover, we find that the strength of these arguments influences the directional agreement rate of model responses. These effects point to a sycophantic tendency in LLMs adapting their stance to align with the presented arguments which has downstream implications for measuring political bias and developing effective mitigation strategies.

View on arXiv
Comments on this paper