ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.03734
60
1

A Survey of Multimodal Ophthalmic Diagnostics: From Task-Specific Approaches to Foundational Models

31 July 2025
Xiaoling Luo
Ruli Zheng
Qiaojian Zheng
Zibo Du
Shuo Yang
Meidan Ding
Qihao Xu
Chengliang Liu
LinLin Shen
ArXiv (abs)PDFHTML
Main:19 Pages
5 Figures
Bibliography:6 Pages
9 Tables
Abstract

Visual impairment represents a major global health challenge, with multimodal imaging providing complementary information that is essential for accurate ophthalmic diagnosis. This comprehensive survey systematically reviews the latest advances in multimodal deep learning methods in ophthalmology up to the year 2025. The review focuses on two main categories: task-specific multimodal approaches and large-scale multimodal foundation models. Task-specific approaches are designed for particular clinical applications such as lesion detection, disease diagnosis, and image synthesis. These methods utilize a variety of imaging modalities including color fundus photography, optical coherence tomography, and angiography. On the other hand, foundation models combine sophisticated vision-language architectures and large language models pretrained on diverse ophthalmic datasets. These models enable robust cross-modal understanding, automated clinical report generation, and decision support. The survey critically examines important datasets, evaluation metrics, and methodological innovations including self-supervised learning, attention-based fusion, and contrastive alignment. It also discusses ongoing challenges such as variability in data, limited annotations, lack of interpretability, and issues with generalizability across different patient populations. Finally, the survey outlines promising future directions that emphasize the use of ultra-widefield imaging and reinforcement learning-based reasoning frameworks to create intelligent, interpretable, and clinically applicable AI systems for ophthalmology.

View on arXiv
Comments on this paper