110

Clinical Expert Uncertainty Guided Generalized Label Smoothing for Medical Noisy Label Learning

Main:6 Pages
4 Figures
3 Tables
Appendix:3 Pages
Abstract

Many previous studies have proposed extracting image labels from clinical notes to create large-scale medical image datasets at a low cost. However, these approaches inherently suffer from label noise due to uncertainty from the clinical experts. When radiologists and physicians analyze medical images to make diagnoses, they often include uncertainty-aware notes such as ``maybe'' or ``not excluded''. Unfortunately, current text-mining methods overlook these nuances, resulting in the creation of noisy labels. Existing methods for handling noisy labels in medical image analysis, which typically address the problem through post-processing techniques, have largely ignored the important issue of expert-driven uncertainty contributing to label noise. To better incorporate the expert-written uncertainty in clinical notes into medical image analysis and address the label noise issue, we first examine the impact of clinical expert uncertainty on label noise. We then propose a clinical expert uncertainty-aware benchmark, along with a label smoothing method, which significantly improves performance compared to current state-of-the-art approaches.

View on arXiv
Comments on this paper