ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2507.18196
0
0

Goal-based Trajectory Prediction for improved Cross-Dataset Generalization

24 July 2025
Daniel Grimm
Ahmed Abouelazm
J. M. Zöllner
ArXiv (abs)PDFHTML
Main:6 Pages
5 Figures
Bibliography:1 Pages
3 Tables
Abstract

To achieve full autonomous driving, a good understanding of the surrounding environment is necessary. Especially predicting the future states of other traffic participants imposes a non-trivial challenge. Current SotA-models already show promising results when trained on real datasets (e.g. Argoverse2, NuScenes). Problems arise when these models are deployed to new/unseen areas. Typically, performance drops significantly, indicating that the models lack generalization. In this work, we introduce a new Graph Neural Network (GNN) that utilizes a heterogeneous graph consisting of traffic participants and vectorized road network. Latter, is used to classify goals, i.e. endpoints of the predicted trajectories, in a multi-staged approach, leading to a better generalization to unseen scenarios. We show the effectiveness of the goal selection process via cross-dataset evaluation, i.e. training on Argoverse2 and evaluating on NuScenes.

View on arXiv
Comments on this paper