ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2507.18178
0
0

Decoupling Knowledge and Reasoning in LLMs: An Exploration Using Cognitive Dual-System Theory

24 July 2025
Mutian Yang
Jiandong Gao
Ji Wu
ArXiv (abs)PDFHTML
Main:10 Pages
9 Figures
Bibliography:3 Pages
13 Tables
Appendix:15 Pages
Abstract

While large language models (LLMs) leverage both knowledge and reasoning during inference, the capacity to distinguish between them plays a pivotal role in model analysis, interpretability, and development. Inspired by dual-system cognitive theory, we propose a cognition attribution framework to decouple the contribution of knowledge and reasoning. In particular, the cognition of LLMs is decomposed into two distinct yet complementary phases: knowledge retrieval (Phase 1) and reasoning adjustment (Phase 2). To separate these phases, LLMs are prompted to generate answers under two different cognitive modes, fast thinking and slow thinking, respectively. The performance under different cognitive modes is analyzed to quantify the contribution of knowledge and reasoning. This architecture is employed to 15 LLMs across 3 datasets. Results reveal: (1) reasoning adjustment is domain-specific, benefiting reasoning-intensive domains (e.g., mathematics, physics, and chemistry) and potentially imparing knowledge-intensive domains. (2) Parameter scaling improves both knowledge and reasoning, with knowledge improvements being more pronounced. Additionally, parameter scaling make LLMs reasoning significantly more prudent, while moderately more intelligent. (3) Knowledge primarily resides in lower network layers, while reasoning operates in higher layers. Our framework not only helps understand LLMs from a "decoupling" perspective, but also provides new insights into existing research, including scaling laws, hierarchical knowledge editing, and limitations of small-model reasoning.

View on arXiv
Comments on this paper