ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2507.14721
0
0

Leveraging Extrinsic Dexterity for Occluded Grasping on Grasp Constraining Walls

19 July 2025
Keita Kobashi
Masayoshi Tomizuka
ArXiv (abs)PDFHTML
Main:6 Pages
8 Figures
Bibliography:1 Pages
3 Tables
Abstract

This study addresses the problem of occluded grasping, where primary grasp configurations of an object are not available due to occlusion with environment. Simple parallel grippers often struggle with such tasks due to limited dexterity and actuation constraints. Prior works have explored object pose reorientation such as pivoting by utilizing extrinsic contacts between an object and an environment feature like a wall, to make the object graspable. However, such works often assume the presence of a short wall, and this assumption may not always hold in real-world scenarios. If the wall available for interaction is too large or too tall, the robot may still fail to grasp the object even after pivoting, and the robot must combine different types of actions to grasp. To address this, we propose a hierarchical reinforcement learning (RL) framework. We use Q-learning to train a high-level policy that selects the type of action expected to yield the highest reward. The selected low-level skill then samples a specific robot action in continuous space. To guide the robot to an appropriate location for executing the selected action, we adopt a Conditional Variational Autoencoder (CVAE). We condition the CVAE on the object point cloud and the skill ID, enabling it to infer a suitable location based on the object geometry and the selected skill. To promote generalization, we apply domain randomization during the training of low-level skills. The RL policy is trained entirely in simulation with a box-like object and deployed to six objects in real world. We conduct experiments to evaluate our method and demonstrate both its generalizability and robust sim-to-real transfer performance with promising success rates.

View on arXiv
Comments on this paper