ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2507.03176
141
3
v1v2 (latest)

Deep Learning Atmospheric Models Reliably Simulate Out-of-Sample Land Heat and Cold Wave Frequencies

3 July 2025
Zilu Meng
Gregory J. Hakim
Wenchang Yang
Gabriel A. Vecchi
    AI4ClAI4CE
ArXiv (abs)PDFHTMLGithub (21★)
Main:11 Pages
17 Figures
Bibliography:1 Pages
1 Tables
Appendix:9 Pages
Abstract

Deep learning (DL)-based general circulation models (GCMs) are emerging as fast simulators, yet their ability to replicate extreme events outside their training range remains unknown. Here, we evaluate two such models -- the hybrid Neural General Circulation Model (NGCM) and purely data-driven Deep Learning Earth System Model (DL\textit{ESy}M) -- against a conventional high-resolution land-atmosphere model (HiRAM) in simulating land heatwaves and coldwaves. All models are forced with observed sea surface temperatures and sea ice over 1900-2020, focusing on the out-of-sample early-20th-century period (1900-1960). Both DL models generalize successfully to unseen climate conditions, broadly reproducing the frequency and spatial patterns of heatwave and cold wave events during 1900-1960 with skill comparable to HiRAM. An exception is over portions of North Asia and North America, where all models perform poorly during 1940-1960. Due to excessive temperature autocorrelation, DL\textit{ESy}M tends to overestimate heatwave and cold wave frequencies, whereas the physics-DL hybrid NGCM exhibits persistence more similar to HiRAM.

View on arXiv
Comments on this paper