10
0

Tensor Program Optimization for the RISC-V Vector Extension Using Probabilistic Programs

Federico Nicolas Peccia
Frederik Haxel
Oliver Bringmann
Main:7 Pages
10 Figures
Bibliography:2 Pages
Abstract

RISC-V provides a flexible and scalable platform for applications ranging from embedded devices to high-performance computing clusters. Particularly, its RISC-V Vector Extension (RVV) becomes of interest for the acceleration of AI workloads. But writing software that efficiently utilizes the vector units of RISC-V CPUs without expert knowledge requires the programmer to rely on the autovectorization features of compilers or hand-crafted libraries like muRISCV-NN. Smarter approaches, like autotuning frameworks, have been missing the integration with the RISC-V RVV extension, thus heavily limiting the efficient deployment of complex AI workloads. In this paper, we present a workflow based on the TVM compiler to efficiently map AI workloads onto RISC-V vector units. Instead of relying on hand-crafted libraries, we integrated the RVV extension into TVM's MetaSchedule framework, a probabilistic program framework for tensor operation tuning. We implemented different RISC-V SoCs on an FPGA and tuned a wide range of AI workloads on them. We found that our proposal shows a mean improvement of 46% in execution latency when compared against the autovectorization feature of GCC, and 29% against muRISCV-NN. Moreover, the binary resulting from our proposal has a smaller code memory footprint, making it more suitable for embedded devices. Finally, we also evaluated our solution on a commercially available RISC-V SoC implementing the RVV 1.0 Vector Extension and found our solution is able to find mappings that are 35% faster on average than the ones proposed by LLVM. We open-sourced our proposal for the community to expand it to target other RISC-V extensions.

View on arXiv
@article{peccia2025_2507.01457,
  title={ Tensor Program Optimization for the RISC-V Vector Extension Using Probabilistic Programs },
  author={ Federico Nicolas Peccia and Frederik Haxel and Oliver Bringmann },
  journal={arXiv preprint arXiv:2507.01457},
  year={ 2025 }
}
Comments on this paper