ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2506.17873
129
2
v1v2 (latest)

SurgVidLM: Towards Multi-grained Surgical Video Understanding with Large Language Model

22 June 2025
Guankun Wang
Junyi Wang
Wenjin Mo
Long Bai
Kun Yuan
Ming Hu
Jinlin Wu
Junjun He
Yiming Huang
N. Padoy
Zhen Lei
Hongbin Liu
Nassir Navab
Hongliang Ren
ArXiv (abs)PDFHTML
Main:6 Pages
3 Figures
Bibliography:2 Pages
1 Tables
Abstract

Recent advances in Multimodal Large Language Models have demonstrated great potential in the medical domain, facilitating users to understand surgical scenes and procedures. Beyond image-based methods, the exploration of Video Large Language Models (Vid-LLMs) has emerged as a promising avenue for capturing the complex sequences of information involved in surgery. However, there is still a lack of Vid-LLMs specialized for fine-grained surgical video understanding tasks, which is crucial for analyzing specific processes or details within a surgical procedure. To bridge this gap, we propose SurgVidLM, the first video language model designed to address both full and fine-grained surgical video comprehension. To train our SurgVidLM, we construct the SVU-31K dataset which consists of over 31K video-instruction pairs, enabling both holistic understanding and detailed analysis of surgical procedures. Furthermore, we introduce the StageFocus mechanism which is a two-stage framework performing the multi-grained, progressive understanding of surgical videos. We also develop the Multi-frequency Fusion Attention to effectively integrate low and high-frequency visual tokens, ensuring the retention of critical information. Experimental results demonstrate that SurgVidLM significantly outperforms state-of-the-art Vid-LLMs in both full and fine-grained video understanding tasks, showcasing its superior capability in capturing complex procedural contexts.

View on arXiv
Comments on this paper