Beyond Audio and Pose: A General-Purpose Framework for Video Synchronization

Video synchronization-aligning multiple video streams capturing the same event from different angles-is crucial for applications such as reality TV show production, sports analysis, surveillance, and autonomous systems. Prior work has heavily relied on audio cues or specific visual events, limiting applicability in diverse settings where such signals may be unreliable or absent. Additionally, existing benchmarks for video synchronization lack generality and reproducibility, restricting progress in the field. In this work, we introduce VideoSync, a video synchronization framework that operates independently of specific feature extraction methods, such as human pose estimation, enabling broader applicability across different content types. We evaluate our system on newly composed datasets covering single-human, multi-human, and non-human scenarios, providing both the methodology and code for dataset creation to establish reproducible benchmarks. Our analysis reveals biases in prior SOTA work, particularly in SeSyn-Net's preprocessing pipeline, leading to inflated performance claims. We correct these biases and propose a more rigorous evaluation framework, demonstrating that VideoSync outperforms existing approaches, including SeSyn-Net, under fair experimental conditions. Additionally, we explore various synchronization offset prediction methods, identifying a convolutional neural network (CNN)-based model as the most effective. Our findings advance video synchronization beyond domain-specific constraints, making it more generalizable and robust for real-world applications.
View on arXiv@article{shin2025_2506.15937, title={ Beyond Audio and Pose: A General-Purpose Framework for Video Synchronization }, author={ Yosub Shin and Igor Molybog }, journal={arXiv preprint arXiv:2506.15937}, year={ 2025 } }