Research on Graph-Retrieval Augmented Generation Based on Historical Text Knowledge Graphs
- RALM

This article addresses domain knowledge gaps in general large language models for historical text analysis in the context of computational humanities and AIGC technology. We propose the Graph RAG framework, combining chain-of-thought prompting, self-instruction generation, and process supervision to create a The First Four Histories character relationship dataset with minimal manual annotation. This dataset supports automated historical knowledge extraction, reducing labor costs. In the graph-augmented generation phase, we introduce a collaborative mechanism between knowledge graphs and retrieval-augmented generation, improving the alignment of general models with historical knowledge. Experiments show that the domain-specific model Xunzi-Qwen1.5-14B, with Simplified Chinese input and chain-of-thought prompting, achieves optimal performance in relation extraction (F1 = 0.68). The DeepSeek model integrated with GraphRAG improves F1 by 11% (0.08-0.19) on the open-domain C-CLUE relation extraction dataset, surpassing the F1 value of Xunzi-Qwen1.5-14B (0.12), effectively alleviating hallucinations phenomenon, and improving interpretability. This framework offers a low-resource solution for classical text knowledge extraction, advancing historical knowledge services and humanities research.
View on arXiv@article{fan2025_2506.15241, title={ Research on Graph-Retrieval Augmented Generation Based on Historical Text Knowledge Graphs }, author={ Yang Fan and Zhang Qi and Xing Wenqian and Liu Chang and Liu Liu }, journal={arXiv preprint arXiv:2506.15241}, year={ 2025 } }