Recent advancements in medical image analysis have led to the development of highly specialized models tailored to specific clinical tasks. These models have demonstrated exceptional performance and remain a crucial research direction. Yet, their applicability is limited to predefined tasks, requiring expertise and extensive resources for development and adaptation. In contrast, generalist models offer a different form of utility: allowing medical practitioners to define tasks on the fly without the need for task-specific model development. In this work, we explore how to train generalist models for the domain of retinal optical coherence tomography using visual in-context learning (VICL), i.e., training models to generalize across tasks based on a few examples provided at inference time. To facilitate rigorous assessment, we propose a broad evaluation protocol tailored to VICL in OCT. We extensively evaluate a state-of-the-art medical VICL approach on multiple retinal OCT datasets, establishing a first baseline to highlight the potential and current limitations of in-context learning for OCT. To foster further research and practical adoption, we openly release our code.
View on arXiv@article{negrini2025_2506.15200, title={ Conquering the Retina: Bringing Visual in-Context Learning to OCT }, author={ Alessio Negrini and Simon Reiß }, journal={arXiv preprint arXiv:2506.15200}, year={ 2025 } }