Accurate acquisition of high-resolution surface meteorological conditions is critical for forecasting and simulating meteorological variables. Directly applying spatial interpolation methods to derive meteorological values at specific locations from low-resolution grid fields often yields results that deviate significantly from the actual conditions. Existing downscaling methods primarily rely on the coupling relationship between geostationary satellites and ERA5 variables as a condition. However, using brightness temperature data from geostationary satellites alone fails to comprehensively capture all the changes in meteorological variables in ERA5 maps. To address this limitation, we can use a wider range of satellite data to make more full use of its inversion effects on various meteorological variables, thus producing more realistic results across different meteorological variables. To further improve the accuracy of downscaling meteorological variables at any location, we propose the Multi-source Observation Down-Scaling Model (MODS). It is a conditional diffusion model that fuses data from multiple geostationary satellites GridSat, polar-orbiting satellites (AMSU-A, HIRS, and MHS), and topographic data (GEBCO), as conditions, and is pre-trained on the ERA5 reanalysis dataset. During training, latent features from diverse conditional inputs are extracted separately and fused into ERA5 maps via a multi-source cross-attention module. By exploiting the inversion relationships between reanalysis data and multi-source atmospheric variables, MODS generates atmospheric states that align more closely with real-world conditions. During sampling, MODS enhances downscaling consistency by incorporating low-resolution ERA5 maps and station-level meteorological data as guidance. Experimental results demonstrate that MODS achieves higher fidelity when downscaling ERA5 maps to a 6.25 km resolution.
View on arXiv