Traditionally, neighborhood studies have employed interviews, surveys, and manual image annotation guided by detailed protocols to identify environmental characteristics, including physical disorder, decay, street safety, and sociocultural symbols, and to examine their impact on developmental and health outcomes. While these methods yield rich insights, they are time-consuming and require intensive expert intervention. Recent technological advances, including vision-language models (VLMs), have begun to automate parts of this process; however, existing efforts are often ad hoc and lack adaptability across research designs and geographic contexts. In this demo paper, we present StreetLens, a human-centered, researcher-configurable workflow that embeds relevant social science expertise in a VLM for scalable neighborhood environmental assessments. StreetLens mimics the process of trained human coders by grounding the analysis in questions derived from established interview protocols, retrieving relevant street view imagery (SVI), and generating a wide spectrum of semantic annotations from objective features (e.g., the number of cars) to subjective perceptions (e.g., the sense of disorder in an image). By enabling researchers to define the VLM's role through domain-informed prompting, StreetLens places domain knowledge at the core of the analysis process. It also supports the integration of prior survey data to enhance robustness and expand the range of characteristics assessed across diverse settings. We provide a Google Colab notebook to make StreetLens accessible and extensible for researchers working with public or custom SVI datasets. StreetLens represents a shift toward flexible, agentic AI systems that work closely with researchers to accelerate and scale neighborhood studies.
View on arXiv@article{kim2025_2506.14670, title={ StreetLens: Enabling Human-Centered AI Agents for Neighborhood Assessment from Street View Imagery }, author={ Jina Kim and Leeje Jang and Yao-Yi Chiang and Guanyu Wang and Michelle Pasco }, journal={arXiv preprint arXiv:2506.14670}, year={ 2025 } }