SceneAware: Scene-Constrained Pedestrian Trajectory Prediction with LLM-Guided Walkability

Accurate prediction of pedestrian trajectories is essential for applications in robotics and surveillance systems. While existing approaches primarily focus on social interactions between pedestrians, they often overlook the rich environmental context that significantly shapes human movement patterns. In this paper, we propose SceneAware, a novel framework that explicitly incorporates scene understanding to enhance trajectory prediction accuracy. Our method leverages a Vision Transformer~(ViT) scene encoder to process environmental context from static scene images, while Multi-modal Large Language Models~(MLLMs) generate binary walkability masks that distinguish between accessible and restricted areas during training. We combine a Transformer-based trajectory encoder with the ViT-based scene encoder, capturing both temporal dynamics and spatial constraints. The framework integrates collision penalty mechanisms that discourage predicted trajectories from violating physical boundaries, ensuring physically plausible predictions. SceneAware is implemented in both deterministic and stochastic variants. Comprehensive experiments on the ETH/UCY benchmark datasets show that our approach outperforms state-of-the-art methods, with more than 50\% improvement over previous models. Our analysis based on different trajectory categories shows that the model performs consistently well across various types of pedestrian movement. This highlights the importance of using explicit scene information and shows that our scene-aware approach is both effective and reliable in generating accurate and physically plausible predictions. Code is available at:this https URL.
View on arXiv@article{bai2025_2506.14144, title={ SceneAware: Scene-Constrained Pedestrian Trajectory Prediction with LLM-Guided Walkability }, author={ Juho Bai and Inwook Shim }, journal={arXiv preprint arXiv:2506.14144}, year={ 2025 } }