We present a non-linear AI-model designed to reconstruct monthly mean anomalies of the European temperature and precipitation based on the Euro-Atlantic Weather regimes (WR) indices. WR represent recurrent, quasi-stationary, and persistent states of the atmospheric circulation that exert considerable influence over the European weather, therefore offering an opportunity for sub-seasonal to seasonal forecasting. While much research has focused on studying the correlation and impacts of the WR on European weather, the estimation of ground-level climate variables, such as temperature and precipitation, from Euro-Atlantic WR remains largely unexplored and is currently limited to linear methods. The presented AI model can capture and introduce complex non-linearities in the relation between the WR indices, describing the state of the Euro-Atlantic atmospheric circulation and the corresponding surface temperature and precipitation anomalies in Europe. We discuss the AI-model performance in reconstructing the monthly mean two-meter temperature and total precipitation anomalies in the European winter and summer, also varying the number of WR used to describe the monthly atmospheric circulation. We assess the impact of errors on the WR indices in the reconstruction and show that a mean absolute relative error below 80% yields improved seasonal reconstruction compared to the ECMWF operational seasonal forecast system, SEAS5. As a demonstration of practical applicability, we evaluate the model using WR indices predicted by SEAS5, finding slightly better or comparable skill relative to the SEAS5 forecast itself. Our findings demonstrate that WR-based anomaly reconstruction, powered by AI tools, offers a promising pathway for sub-seasonal and seasonal forecasting.
View on arXiv@article{camilletti2025_2506.13758, title={ AI reconstruction of European weather from the Euro-Atlantic regimes }, author={ A. Camilletti and G. Franch and E. Tomasi and M. Cristoforetti }, journal={arXiv preprint arXiv:2506.13758}, year={ 2025 } }