ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2506.13083
29
0

Uncertainty-Aware Graph Neural Networks: A Multi-Hop Evidence Fusion Approach

16 June 2025
Qingfeng Chen
Shiyuan Li
Yixin Liu
Shirui Pan
Geoffrey I. Webb
Shichao Zhang
    EDL
ArXiv (abs)PDFHTML
Main:12 Pages
12 Figures
Bibliography:2 Pages
Abstract

Graph neural networks (GNNs) excel in graph representation learning by integrating graph structure and node features. Existing GNNs, unfortunately, fail to account for the uncertainty of class probabilities that vary with the depth of the model, leading to unreliable and risky predictions in real-world scenarios. To bridge the gap, in this paper, we propose a novel Evidence Fusing Graph Neural Network (EFGNN for short) to achieve trustworthy prediction, enhance node classification accuracy, and make explicit the risk of wrong predictions. In particular, we integrate the evidence theory with multi-hop propagation-based GNN architecture to quantify the prediction uncertainty of each node with the consideration of multiple receptive fields. Moreover, a parameter-free cumulative belief fusion (CBF) mechanism is developed to leverage the changes in prediction uncertainty and fuse the evidence to improve the trustworthiness of the final prediction. To effectively optimize the EFGNN model, we carefully design a joint learning objective composed of evidence cross-entropy, dissonance coefficient, and false confident penalty. The experimental results on various datasets and theoretical analyses demonstrate the effectiveness of the proposed model in terms of accuracy and trustworthiness, as well as its robustness to potential attacks. The source code of EFGNN is available atthis https URL.

View on arXiv
@article{chen2025_2506.13083,
  title={ Uncertainty-Aware Graph Neural Networks: A Multi-Hop Evidence Fusion Approach },
  author={ Qingfeng Chen and Shiyuan Li and Yixin Liu and Shirui Pan and Geoffrey I. Webb and Shichao Zhang },
  journal={arXiv preprint arXiv:2506.13083},
  year={ 2025 }
}
Comments on this paper