ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2506.12165
7
0

TCN-DPD: Parameter-Efficient Temporal Convolutional Networks for Wideband Digital Predistortion

13 June 2025
Huanqiang Duan
Manno Versluis
Qinyu Chen
Leo C. N. de Vreede
Chang Gao
ArXiv (abs)PDFHTML
Main:3 Pages
7 Figures
Bibliography:1 Pages
2 Tables
Abstract

Digital predistortion (DPD) is essential for mitigating nonlinearity in RF power amplifiers, particularly for wideband applications. This paper presents TCN-DPD, a parameter-efficient architecture based on temporal convolutional networks, integrating noncausal dilated convolutions with optimized activation functions. Evaluated on the OpenDPD framework with the DPA_200MHz dataset, TCN-DPD achieves simulated ACPRs of -51.58/-49.26 dBc (L/R), EVM of -47.52 dB, and NMSE of -44.61 dB with 500 parameters and maintains superior linearization than prior models down to 200 parameters, making it promising for efficient wideband PA linearization.

View on arXiv
@article{duan2025_2506.12165,
  title={ TCN-DPD: Parameter-Efficient Temporal Convolutional Networks for Wideband Digital Predistortion },
  author={ Huanqiang Duan and Manno Versluis and Qinyu Chen and Leo C. N. de Vreede and Chang Gao },
  journal={arXiv preprint arXiv:2506.12165},
  year={ 2025 }
}
Comments on this paper