Skin carcinoma is the most prevalent form of cancer globally, accounting for over 8billioninannualhealthcareexpenditures.Inclinicalsettings,physiciansdocumentpatientvisitsusingdetailedSOAP(Subjective,Objective,Assessment,andPlan)notes.However,manuallygeneratingthesenotesislabor−intensiveandcontributestoclinicianburnout.Inthiswork,weproposeaweaklysupervisedmultimodalframeworktogenerateclinicallystructuredSOAPnotesfromlimitedinputs,includinglesionimagesandsparseclinicaltext.Ourapproachreducesrelianceonmanualannotations,enablingscalable,clinicallygroundeddocumentationwhilealleviatingclinicianburdenandreducingtheneedforlargeannotateddata.OurmethodachievesperformancecomparabletoGPT−4o,Claude,andDeepSeekJanusProacrosskeyclinicalrelevancemetrics.Toevaluateclinicalquality,weintroducetwonovelmetricsMedConceptEvalandClinicalCoherenceScore(CCS)whichassesssemanticalignmentwithexpertmedicalconceptsandinputfeatures,respectively.
@article{kamal2025_2506.10328,
title={ Towards Scalable SOAP Note Generation: A Weakly Supervised Multimodal Framework },
author={ Sadia Kamal and Tim Oates and Joy Wan },
journal={arXiv preprint arXiv:2506.10328},
year={ 2025 }
}