ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2506.10020
34
0

From Threat to Tool: Leveraging Refusal-Aware Injection Attacks for Safety Alignment

7 June 2025
Kyubyung Chae
Hyunbin Jin
Taesup Kim
ArXiv (abs)PDFHTML
Main:8 Pages
8 Figures
Bibliography:3 Pages
17 Tables
Appendix:13 Pages
Abstract

Safely aligning large language models (LLMs) often demands extensive human-labeled preference data, a process that's both costly and time-consuming. While synthetic data offers a promising alternative, current methods frequently rely on complex iterative prompting or auxiliary models. To address this, we introduce Refusal-Aware Adaptive Injection (RAAI), a straightforward, training-free, and model-agnostic framework that repurposes LLM attack techniques. RAAI works by detecting internal refusal signals and adaptively injecting predefined phrases to elicit harmful, yet fluent, completions. Our experiments show RAAI effectively jailbreaks LLMs, increasing the harmful response rate from a baseline of 2.15% to up to 61.04% on average across four benchmarks. Crucially, fine-tuning LLMs with the synthetic data generated by RAAI improves model robustness against harmful prompts while preserving general capabilities on standard tasks like MMLU and ARC. This work highlights how LLM attack methodologies can be reframed as practical tools for scalable and controllable safety alignment.

View on arXiv
Comments on this paper