ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2506.09994
62
0

eFlesh: Highly customizable Magnetic Touch Sensing using Cut-Cell Microstructures

11 June 2025
Venkatesh Pattabiraman
Zizhou Huang
Daniele Panozzo
Denis Zorin
Lerrel Pinto
Raunaq M. Bhirangi
ArXiv (abs)PDFHTML
Main:15 Pages
12 Figures
Bibliography:5 Pages
1 Tables
Appendix:2 Pages
Abstract

If human experience is any guide, operating effectively in unstructured environments -- like homes and offices -- requires robots to sense the forces during physical interaction. Yet, the lack of a versatile, accessible, and easily customizable tactile sensor has led to fragmented, sensor-specific solutions in robotic manipulation -- and in many cases, to force-unaware, sensorless approaches. With eFlesh, we bridge this gap by introducing a magnetic tactile sensor that is low-cost, easy to fabricate, and highly customizable. Building an eFlesh sensor requires only four components: a hobbyist 3D printer, off-the-shelf magnets (<5),aCADmodelofthedesiredshape,andamagnetometercircuitboard.Thesensorisconstructedfromtiled,parameterizedmicrostructures,whichallowfortuningthesensor′sgeometryanditsmechanicalresponse.Weprovideanopen−sourcedesigntoolthatconvertsconvexOBJ/STLfilesinto3D−printableSTLsforfabrication.Thismodulardesignframeworkenablesuserstocreateapplication−specificsensors,andtoadjustsensitivitydependingonthetask.OursensorcharacterizationexperimentsdemonstratethecapabilitiesofeFlesh:contactlocalizationRMSEof0.5mm,andforcepredictionRMSEof0.27Nfornormalforceand0.12Nforshearforce.Wealsopresentalearnedslipdetectionmodelthatgeneralizestounseenobjectswith955), a CAD model of the desired shape, and a magnetometer circuit board. The sensor is constructed from tiled, parameterized microstructures, which allow for tuning the sensor's geometry and its mechanical response. We provide an open-source design tool that converts convex OBJ/STL files into 3D-printable STLs for fabrication. This modular design framework enables users to create application-specific sensors, and to adjust sensitivity depending on the task. Our sensor characterization experiments demonstrate the capabilities of eFlesh: contact localization RMSE of 0.5 mm, and force prediction RMSE of 0.27 N for normal force and 0.12 N for shear force. We also present a learned slip detection model that generalizes to unseen objects with 95% accuracy, and visuotactile control policies that improve manipulation performance by 40% over vision-only baselines -- achieving 91% average success rate for four precise tasks that require sub-mm accuracy for successful completion. All design files, code and the CAD-to-eFlesh STL conversion tool are open-sourced and available onthis https URL.5),aCADmodelofthedesiredshape,andamagnetometercircuitboard.Thesensorisconstructedfromtiled,parameterizedmicrostructures,whichallowfortuningthesensor′sgeometryanditsmechanicalresponse.Weprovideanopen−sourcedesigntoolthatconvertsconvexOBJ/STLfilesinto3D−printableSTLsforfabrication.Thismodulardesignframeworkenablesuserstocreateapplication−specificsensors,andtoadjustsensitivitydependingonthetask.OursensorcharacterizationexperimentsdemonstratethecapabilitiesofeFlesh:contactlocalizationRMSEof0.5mm,andforcepredictionRMSEof0.27Nfornormalforceand0.12Nforshearforce.Wealsopresentalearnedslipdetectionmodelthatgeneralizestounseenobjectswith95

View on arXiv
@article{pattabiraman2025_2506.09994,
  title={ eFlesh: Highly customizable Magnetic Touch Sensing using Cut-Cell Microstructures },
  author={ Venkatesh Pattabiraman and Zizhou Huang and Daniele Panozzo and Denis Zorin and Lerrel Pinto and Raunaq Bhirangi },
  journal={arXiv preprint arXiv:2506.09994},
  year={ 2025 }
}
Comments on this paper