ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2506.09665
74
5

VideoMat: Extracting PBR Materials from Video Diffusion Models

11 June 2025
Jacob Munkberg
Zian Wang
Ruofan Liang
Tianchang Shen
J. Hasselgren
    DiffM
    VGen
ArXivPDFHTML
Abstract

We leverage finetuned video diffusion models, intrinsic decomposition of videos, and physically-based differentiable rendering to generate high quality materials for 3D models given a text prompt or a single image. We condition a video diffusion model to respect the input geometry and lighting condition. This model produces multiple views of a given 3D model with coherent material properties. Secondly, we use a recent model to extract intrinsics (base color, roughness, metallic) from the generated video. Finally, we use the intrinsics alongside the generated video in a differentiable path tracer to robustly extract PBR materials directly compatible with common content creation tools.

View on arXiv
@article{munkberg2025_2506.09665,
  title={ VideoMat: Extracting PBR Materials from Video Diffusion Models },
  author={ Jacob Munkberg and Zian Wang and Ruofan Liang and Tianchang Shen and Jon Hasselgren },
  journal={arXiv preprint arXiv:2506.09665},
  year={ 2025 }
}
Comments on this paper