ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2506.07092
13
0

Patient Similarity Computation for Clinical Decision Support: An Efficient Use of Data Transformation, Combining Static and Time Series Data

8 June 2025
J. K. Sana
M. Masud
Mizanur Rahman
Mahmudur Rahman
ArXiv (abs)PDFHTML
Main:21 Pages
17 Figures
Bibliography:5 Pages
7 Tables
Abstract

Patient similarity computation (PSC) is a fundamental problem in healthcare informatics. The aim of the patient similarity computation is to measure the similarity among patients according to their historical clinical records, which helps to improve clinical decision support. This paper presents a novel distributed patient similarity computation (DPSC) technique based on data transformation (DT) methods, utilizing an effective combination of time series and static data. Time series data are sensor-collected patients' information, including metrics like heart rate, blood pressure, Oxygen saturation, respiration, etc. The static data are mainly patient background and demographic data, including age, weight, height, gender, etc. Static data has been used for clustering the patients. Before feeding the static data to the machine learning model adaptive Weight-of-Evidence (aWOE) and Z-score data transformation (DT) methods have been performed, which improve the prediction performances. In aWOE-based patient similarity models, sensitive patient information has been processed using aWOE which preserves the data privacy of the trained models. We used the Dynamic Time Warping (DTW) approach, which is robust and very popular, for time series similarity. However, DTW is not suitable for big data due to the significant computational run-time. To overcome this problem, distributed DTW computation is used in this study. For Coronary Artery Disease, our DT based approach boosts prediction performance by as much as 11.4%, 10.20%, and 12.6% in terms of AUC, accuracy, and F-measure, respectively. In the case of Congestive Heart Failure (CHF), our proposed method achieves performance enhancement up to 15.9%, 10.5%, and 21.9% for the same measures, respectively. The proposed method reduces the computation time by as high as 40%.

View on arXiv
@article{sana2025_2506.07092,
  title={ Patient Similarity Computation for Clinical Decision Support: An Efficient Use of Data Transformation, Combining Static and Time Series Data },
  author={ Joydeb Kumar Sana and Mohammad M. Masud and M Sohel Rahman and M Saifur Rahman },
  journal={arXiv preprint arXiv:2506.07092},
  year={ 2025 }
}
Comments on this paper